Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
2.
Anesthesiology ; 135(6): 951-962, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1546049

ABSTRACT

Respiratory viruses are transmitted via respiratory particles that are emitted when people breath, speak, cough, or sneeze. These particles span the size spectrum from visible droplets to airborne particles of hundreds of nanometers. Barrier face coverings ("cloth masks") and surgical masks are loose-fitting and provide limited protection from airborne particles since air passes around the edges of the mask as well as through the filtering material. Respirators, which fit tightly to the face, provide more effective respiratory protection. Although healthcare workers have relied primarily on disposable filtering facepiece respirators (such as N95) during the COVID-19 pandemic, reusable elastomeric respirators have significant potential advantages for the COVID-19 and future respiratory virus pandemics. However, currently available elastomeric respirators were not designed primarily for healthcare or pandemic use and require further development to improve their suitability for this application. The authors believe that the development, implementation, and stockpiling of improved elastomeric respirators should be an international public health priority.


Subject(s)
COVID-19/epidemiology , Elastomers/standards , Equipment Design/standards , Health Personnel/standards , Occupational Exposure/standards , Ventilators, Mechanical/standards , COVID-19/prevention & control , COVID-19/transmission , Equipment Design/methods , Equipment Reuse/standards , Humans , Occupational Exposure/prevention & control , Pandemics/prevention & control
4.
Otolaryngol Clin North Am ; 54(1): 11-23, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1235961

ABSTRACT

A new era of surgical visualization and magnification is poised to disrupt the field of otology and neurotology. The once revolutionary benefits of the binocular microscope now are shared with rigid endoscopes and exoscopes. These 2 modalities are complementary. The endoscope improves visualization of the hidden recesses through the external auditory canal or canal-up mastoidectomy. The exoscope provides an immersive visual experience and superior ergonomics compared with binocular microscopy. Endoscopes and exoscopes are poised to disrupt the standard of care for surgical visualization and magnification in otology and neurotology.


Subject(s)
COVID-19 , Endoscopes/standards , Endoscopy/instrumentation , Neurotology/instrumentation , Otolaryngology/instrumentation , Pandemics , Ear Canal/surgery , Endoscopy/standards , Equipment Design/standards , Humans , Mastoidectomy/instrumentation , Microsurgery/instrumentation , Minimally Invasive Surgical Procedures/instrumentation , Neurosurgical Procedures/instrumentation , Neurotology/standards , Otolaryngology/standards , Standard of Care/standards , United States
5.
A A Pract ; 15(4): e01449, 2021 Apr 27.
Article in English | MEDLINE | ID: covidwho-1204121

ABSTRACT

Snorkel masks have become an option for personal protective equipment (PPE) due to the shortage of air filtration at least 95% of airborne particle (N95) masks as a result of the coronavirus disease 2019 (COVID-19) pandemic. We developed a 3D design of a triheaded adapter that connects a snorkel mask to 3 different National Institute for Occupational Safety and Health (NIOSH)-approved air filtration at least 99% of airborne particles (N99) filters with the aim of improving wearer comfort. We measured the resistance of the new triheaded adapter to be one-third the resistance of the single adapter. Interdepartmental survey of anesthesiologists showed an improvement in perceived comfort when using the triheaded adapter as compared to the single adapter.


Subject(s)
Anesthesiologists/trends , COVID-19/prevention & control , Equipment Design/trends , Masks/trends , Occupational Exposure/prevention & control , Personal Protective Equipment/trends , Anesthesiologists/standards , COVID-19/epidemiology , Equipment Design/standards , Humans , Masks/standards , Personal Protective Equipment/standards
6.
Anaesthesia ; 76(5): 617-622, 2021 05.
Article in English | MEDLINE | ID: covidwho-1066603

ABSTRACT

Disposable N95 respirator masks are the current standard for healthcare worker respiratory protection in the COVID-19 pandemic. In addition to shortages, qualitative fit testing can have low sensitivity for detecting poor fit, leading to inconsistent protection. Multiple groups have developed alternative solutions such as modified snorkel masks to overcome these limitations, but validation of these solutions has been lacking. We sought to determine if N95s and snorkel masks with attached high-efficiency filters provide consistent protection levels in healthcare workers and if the addition of positive pressure via an inexpensive powered-air purifying respirator to the snorkel mask would provide enhanced protection. Fifty-one healthcare workers who were qualitatively fitted with N95 masks underwent quantitative mask fit testing according to a simulated workplace exercise protocol. N95, snorkel masks with high-efficiency filters and snorkel masks with powered-air purifying respirators were tested. Respiratory filtration ratios were collected for each step and averaged to obtain an overall workplace protocol fit factor. Failure was defined as either an individual filtration ratio or an overall fit factor below 100. N95s and snorkel masks with high-efficiency filters failed one or more testing steps in 59% and 20% of participants, respectively, and 24% and 12% failed overall fit factors, respectively. The snorkel masks with powered-air purifying respirators had zero individual or overall failures. N95 and snorkel masks with high-efficiency filter respirators were found to provide inconsistent respiratory protection in healthcare workers.


Subject(s)
COVID-19/prevention & control , Cost-Benefit Analysis/standards , Health Personnel/standards , Masks/standards , N95 Respirators/standards , Adult , COVID-19/economics , Cohort Studies , Equipment Design/economics , Equipment Design/standards , Female , Health Personnel/economics , Humans , Male , Masks/economics , Middle Aged , N95 Respirators/economics , Occupational Exposure/economics , Occupational Exposure/prevention & control , Personal Protective Equipment/economics , Personal Protective Equipment/standards , Prospective Studies , Reproducibility of Results
7.
J Acoust Soc Am ; 149(1): 66, 2021 01.
Article in English | MEDLINE | ID: covidwho-1035286

ABSTRACT

During the COVID-19 outbreak, the auscultation of heart and lung sounds has played an important role in the comprehensive diagnosis and real-time monitoring of confirmed cases. With clinicians wearing protective clothing in isolation wards, a potato chip tube stethoscope, which is a secure and flexible substitute for a conventional stethoscope, has been used by Chinese medical workers in the first-line treatment of COVID-19. In this study, an optimal design for this simple cylindrical stethoscope is proposed based on the fundamental theory of acoustic waveguides. Analyses of the cutoff frequency, sound power transmission coefficient, and sound wave propagation in the uniform lossless tube provide theoretical guidance for selecting the geometric parameters for this simple cylindrical stethoscope. A basic investigation into the auscultatory performances of the original tube and the optimal tube with proposed dimensions was conducted both in a semi-anechoic chamber and in a quiet laboratory. Both experimental results and front-line doctors' clinical feedback endorse the proposed theoretical optimization.


Subject(s)
Acoustics , Auscultation/standards , COVID-19/diagnosis , Equipment Design/standards , Stethoscopes/standards , Acoustics/instrumentation , Auscultation/instrumentation , Auscultation/methods , COVID-19/epidemiology , COVID-19/physiopathology , Equipment Design/instrumentation , Equipment Design/methods , Humans , Respiratory Sounds/physiology , Respiratory Sounds/physiopathology
8.
S Afr Med J ; 0(0): 13162, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-994170

ABSTRACT

BACKGROUND: Given the global shortage of N95 filtering facepiece respirators (FFP2 in Europe) during the COVID-19 pandemic, KN95 masks (Chinese equivalent of the N95 and FFP2) were imported and distributed in South Africa (SA). However, there are hardly any published independent safety data on KN95 masks. OBJECTIVES: To evaluate the seal, fit and filtration efficiency of several brands of KN95 masks marketed for widespread use in SA healthcare facilities, using standardised testing protocols. METHODS: The verifiability of manufacturer and technical details was first ascertained, followed by evaluation of the number of layers comprising the mask material. The testing protocol involved a directly observed positive and negative pressure user seal check, which if passed was followed by qualitative fit testing (sodium saccharin) in healthy laboratory or healthcare workers. Quantitative fit testing (3M) was used to validate the qualitative fit testing method. The filtration efficacy and integrity of the mask filter material were evaluated using a particle counter-based testing rig utilising aerosolised saline (expressed as filtration efficacy of 0.3 µm particles). Halyard FLUIDSHIELD 3 N95 and 3M 1860 N95 masks were used as controls. RESULTS: Twelve KN95 mask brands (total of 36 masks) were evaluated in 7 participants. The mask type and manufacturing details were printed on only 2/12 brands (17%) as per National Institute of Occupational Safety and Health and European Union regulatory requirements. There was considerable variability in the number of KN95 mask layers (between 3 and 6 layers in the 12 brands evaluated). The seal check pass rate was significantly lower in KN95 compared with N95 masks (1/36 (3%) v. 12/12 (100%); p<0.0001). Modification of the KN95 ear-loop tension using head straps or staples, or improving the facial seal using Micropore 3M tape, enhanced seal test performance in 15/36 KN95 masks evaluated (42%). However, none of these 15 passed downstream qualitative fit testing compared with the control N95 masks (0/15 v. 12/12; p<0.0001). Only 4/8 (50%) of the KN95 brands tested passed the minimum filtration requirements for an N95 mask (suboptimal KN95 filtration efficacy varied from 12% to 78%, compared with 56% for a surgical mask and >99% for the N95 masks at the 0.3 µm particle size). CONCLUSIONS: The KN95 masks tested failed the stipulated safety thresholds associated with protection of healthcare workers against airborne pathogens such as SARS-CoV-2. These preliminary data have implications for the regulation of masks and their distribution to healthcare workers and facilities in SA.


Subject(s)
COVID-19 , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Materials Testing/methods , N95 Respirators/standards , Occupational Exposure/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Equipment Design/methods , Equipment Design/standards , Equipment Failure Analysis , Humans , SARS-CoV-2/isolation & purification , Safety Management/organization & administration , South Africa/epidemiology
9.
Rev Sci Instrum ; 91(11): 114101, 2020 Nov 01.
Article in English | MEDLINE | ID: covidwho-951299

ABSTRACT

The SARS-CoV-2 global pandemic has produced widespread shortages of certified air-filtering personal protection equipment and an acute need for rapid evaluation of breathability and filtration efficiency of proposed alternative solutions. Here, we describe experimental efforts to nondestructively quantify three vital characteristics of mask approaches: breathability, material filtration effectiveness, and sensitivity to fit. We focus on protection against aqueous aerosols >0.3 µm using off-the-shelf particle, flow, and pressure sensors, permitting rapid comparative evaluation of these three properties. We present and discuss both the pressure drop and the particle penetration as a function of flow to permit comparison of relative protection for a set of proposed filter and mask designs. The design considerations of the testing apparatus can be reproduced by university laboratories and medical facilities and used for rapid local quality control of respirator masks that are of uncertified origin, monitoring the long-term effects of various disinfection schemes and evaluating improvised products not designed or marketed for filtration.


Subject(s)
COVID-19/prevention & control , Masks , Pandemics/prevention & control , Respiratory Protective Devices , SARS-CoV-2 , Aerosols , Air Microbiology , Air Movements , Air Pressure , COVID-19/transmission , Equipment Design/standards , Face , Filtration/instrumentation , Humans , Masks/standards , Materials Testing/instrumentation , Materials Testing/standards , N95 Respirators/standards , Particle Size , Respiratory Protective Devices/standards
10.
Zhonghua Liu Xing Bing Xue Za Zhi ; 41(9): 1381-1384, 2020 Sep 10.
Article in Chinese | MEDLINE | ID: covidwho-881374

ABSTRACT

The central air conditioning ventilation system plays an important role in the air circulation of buildings such as centralized isolation medical observation points and general public buildings. In order to meet the requirements of COVID-19 epidemic prevention and control, Beijing Preventive Medicine Association organized Beijing CDC and other professional institutes to write up the group standard entitled "Technical specification for health risk investigation of central air conditioning ventilation system during the COVID-19 epidemic (T/BPMA 0006-2020)" . According to the particularity of central air conditioning ventilation system risk control during the outbreak of similar respiratory infectious diseases, based on current laws and regulations and the principle of scientific, practical, consistency and normative, 8 key points of risk investigations were summarized, which were the location of fresh air outlet, air conditioning mode, air return mode, air system, air distribution, fresh air volume, exhaust and air conditioner components. The contents, process, method, data analysis and conclusion of the investigation implementation were also defined and unified. It could standardize and guide institutions such as disease control and health supervision to carry out relevant risk managements, and provided solutions and technical supports for such major public health emergencies in city operations.


Subject(s)
Air Conditioning/adverse effects , Coronavirus Infections/prevention & control , Epidemics , Equipment Design/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Ventilation/instrumentation , Air Conditioning/instrumentation , Beijing/epidemiology , COVID-19 , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , Risk Assessment
11.
Disaster Med Public Health Prep ; 14(5): e42-e46, 2020 10.
Article in English | MEDLINE | ID: covidwho-740021

ABSTRACT

Despite numerous masking recommendations from public health agencies, including the World Health Organization, editorials, and commentaries providing support for this notion, none had examined different homemade masks or demonstrated that perhaps not all cloth masks are the same. This article aims to provide evidence-based recommendations on cloth-mask materials, its design, and, importantly, its maintenance. Articles were obtained from PubMed and preprint servers up to June 10, 2020. Current evidence suggests that filtration effectiveness can range from 3% to 95%. Multiple layer (hybrid) homemade masks made from a combination of high density 100% cotton and materials with electrostatic charge would be more effective than one made from a single material. Mask fit greatly affects filtration efficiency, and adding an overhead knot or nylon overlay potentially provides the best fit for cloth masks. There is a paucity of evidence for masks maintenance as most studies are in the laboratory setting; however, switching every 4 hours as in medical masks and stored in dedicated containers while awaiting disinfection is recommended. Outside of these recommendations to improve the effectiveness of cloth masks to reduce infection transmission, there is a need for countries to set up independent testing labs for homemade masks made based on locally available materials. This can use existing occupational health laboratories usually used for accrediting masks and respirators.


Subject(s)
Evidence-Based Practice/methods , Masks/standards , Disinfection/methods , Equipment Design/standards , Equipment Design/statistics & numerical data , Evidence-Based Practice/trends , Filtration/standards , Filtration/statistics & numerical data , Humans , Masks/statistics & numerical data , Masks/supply & distribution , Materials Science/standards , Personal Protective Equipment/standards , Personal Protective Equipment/statistics & numerical data , Personal Protective Equipment/supply & distribution
12.
J Hosp Infect ; 106(2): 246-253, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-739030

ABSTRACT

BACKGROUND: There is a worldwide shortage of medical-grade face masks. Donning masks can play an important role in curbing the spread of SARS-CoV-2. AIM: To conclude whether there is an effective mask for the population to wear in public that could easily be made during a medical face mask shortage using readily available materials. METHODS: We determined the effectiveness of readily available materials and models for making a face mask. The outcomes were compared with N95/FFP2/KN95 masks that entered the Netherlands in April-May 2020. Masks were tested to determine whether they filtered a minimum of 35% of 0.3-µm particles, are hydrophobic, seal on the face, are breathable, and can be washed. FINDINGS: Fourteen of the 25 (combinations of) materials filtered at least 35% of 0.3-µm particles. Four of the materials proved hydrophobic, all commercially manufactured filters. Two models sealed the face. Twenty-two of the 25 materials were breathable at <0.7 mbar. None of the hydrophobic materials stayed intact after washing. CONCLUSIONS: It would be possible to reduce the reproduction rate of SARS-CoV-2 from 2.4 to below one if 39% of the population would wear a mask made from ePM1 85% commercially manufactured filter fabric and in a duckbill form. This mask performs better than 80% of the imported N95/FFP2/KN95 masks and provides a better fit than a surgical mask. Two layers of quilt fabric with a household paper towel as filter is also a viable choice for protecting the user and the environment.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Equipment Design/standards , Guidelines as Topic , Masks/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Textiles/standards , COVID-19 , Humans , Netherlands , SARS-CoV-2
13.
J Hosp Infect ; 106(2): 277-282, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-704916

ABSTRACT

BACKGROUND: The shortage of single-use N95 respirator masks (NRMs) during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted consideration of NRM recycling to extend limited stocks by healthcare providers and facilities. AIM: To assess potential reuse via autoclaving of NRMs worn daily in a major urban Canadian hospital. METHODS: NRM reusability was assessed following collection from volunteer staff after 2-8 h use, sterilization by autoclaving and PortaCount fit testing. A workflow was developed for reprocessing hundreds of NRMs daily. FINDINGS: Used NRMs passed fit testing after autoclaving once, with 86% passing a second reuse/autoclave cycle. A separate cohort of used masks pre-warmed before autoclaving passed fit testing. To recycle 200-1000 NRMs daily, procedures for collection, sterilization and re-distribution were developed to minimize particle aerosolization risk during NRM handling, to reject NRM showing obvious wear, and to promote adoption by staff. NRM recovery ranged from 49% to 80% across 12 collection cycles. CONCLUSION: Reuse of NRMs is feasible in major hospitals and other healthcare facilities. In sharp contrast to studies of unused NRMs passing fit testing after 10 autoclave cycles, we show that daily wear substantially reduces NRM fit, limiting reuse to a single cycle, but still increasing NRM stocks by ∼66%. Such reuse requires development of a comprehensive plan that includes communication across staffing levels, from front-line workers to hospital administration, to increase the collection, acceptance of and adherence to sterilization processes for NRM recovery.


Subject(s)
Coronavirus Infections/prevention & control , Equipment Design/standards , Equipment Reuse/standards , Hospitals, Urban/standards , Infection Control/standards , Masks/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Ventilators, Mechanical/standards , Betacoronavirus , COVID-19 , Canada/epidemiology , Coronavirus Infections/epidemiology , Equipment Design/statistics & numerical data , Equipment Reuse/statistics & numerical data , Hospitals, Urban/statistics & numerical data , Humans , Infection Control/methods , Masks/statistics & numerical data , Occupational Exposure/standards , Occupational Exposure/statistics & numerical data , Pneumonia, Viral/epidemiology , Respiratory Protective Devices/statistics & numerical data , SARS-CoV-2 , Ventilators, Mechanical/statistics & numerical data
14.
Int J Qual Health Care ; 33(Supplement_1): 4-10, 2021 Jan 12.
Article in English | MEDLINE | ID: covidwho-705560

ABSTRACT

BACKGROUND: This paper describes a rapid response project from the Chartered Institute of Ergonomics & Human Factors (CIEHF) to support the design, development, usability testing and operation of new ventilators as part of the UK response during the COVID-19 pandemic. METHOD: A five-step approach was taken to (1) assess the COVID-19 situation and decide to formulate a response; (2) mobilise and coordinate Human Factors/Ergonomics (HFE) specialists; (3) ideate, with HFE specialists collaborating to identify, analyse the issues and opportunities, and develop strategies, plans and processes; (4) generate outputs and solutions; and (5) respond to the COVID-19 situation via targeted support and guidance. RESULTS: The response for the rapidly manufactured ventilator systems (RMVS) has been used to influence both strategy and practice to address concerns about changing safety standards and the detailed design procedure with RMVS manufacturers. CONCLUSION: The documents are part of a wider collection of HFE advice which is available on the CIEHF COVID-19 website (https://covid19.ergonomics.org.uk/).


Subject(s)
COVID-19 , Ergonomics/methods , Ventilators, Mechanical/standards , Equipment Design/methods , Equipment Design/standards , Ergonomics/standards , Humans , Patient Safety/standards , United Kingdom
16.
Pulmonology ; 27(5): 438-447, 2021.
Article in English | MEDLINE | ID: covidwho-693888

ABSTRACT

BACKGROUND: As the Coronavirus disease 2019 (COVID-19) is spreading worldwide, countries are dealing with different phases of the pandemic. Lately, scientific evidence has been growing about the measures for reopening respiratory outpatient services during the COVID-19 pandemic. We aim to summarize the key differences and similarities among recommendations by different national and international organizations. METHODS: We searched on Google and Pubmed for recently published National and International Recommendations/Guidelines/Position Papers from professional organizations and societies, offering a guidance to physicians on how to safely perform pulmonary function testing during COVID-19 pandemic. We also searched for spirometry manufacturers' operational indications. RESULTS: Indications on spirometry were released by the Chinese Task force, the American Thoracic Society, the European Respiratory Society, the Thoracic Society of Australia and New Zealand, the Société de Pneumologie de Langue Française, the Spanish Societies (Sociedad Espanola de Neumologia y Cirugia Toracica, Sociedad Espanola de Alergologia e Inmunologia Clinica, Asociacion de Especialistas en Enfermeria del trabajo, Asociacion de Enfermeria Comunitaria), the Sociedade Portuguesa de Pneumologia, the British Thoracic Society/Association for Respiratory Technology & Physiology, the Irish Thoracic Society, the Sociedad Uruguaya de Neumologia, the Italian Thoracic Society and the Italian Respiratory Society, Cleveland Clinic and Nebraska Medical Center. Detailed technical recommendations were found on manufacturers' websites. We found several similarities across available guidelines for safely resuming pulmonary function services, as well as differences in criteria for selecting eligible patients for which spirometry is deemed essential and advice which was not homogenous on room ventilation precautions. CONCLUSIONS: This study shows a synthesis of national/international guidelines allowing practicing physicians to adapt and shape the way to organize their outpatient services locally. There is generally good agreement on the importance of limiting pulmonary function testing to selected cases only. However, significant differences concerning the subsets of candidate patients, as well as on the management of adequate room ventilation, were observed.


Subject(s)
COVID-19/physiopathology , Manufacturing Industry/organization & administration , Respiratory Function Tests/methods , Spirometry/methods , Ambulatory Care Facilities/organization & administration , Ambulatory Care Facilities/standards , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Clinical Decision-Making/ethics , Consensus , Disease Outbreaks , Equipment Design/standards , Equipment and Supplies Utilization/standards , Guidelines as Topic/standards , Humans , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Manufacturing Industry/statistics & numerical data , Pandemics , Physicians , Respiratory Function Tests/standards , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Safety , Spirometry/standards
18.
Am J Infect Control ; 49(2): 274-275, 2021 02.
Article in English | MEDLINE | ID: covidwho-645687

ABSTRACT

The use of surgical sterilization wrap for respirator masks during the COVID-19 crisis has become a popularized personal protective equipment alternative option due to claims supporting its ability to meet N95 standards. This study sought to assess these claims using standardized filter testing. The tested material failed to meet N95 standards and suggests its use may place medical personnel at increased risk of harm when managing COVID-19 patients.


Subject(s)
COVID-19/prevention & control , Equipment Design/adverse effects , Masks/virology , Materials Testing/statistics & numerical data , Respiratory Protective Devices/virology , SARS-CoV-2/isolation & purification , Aerosols/isolation & purification , COVID-19/virology , Equipment Design/standards , Health Personnel , Humans , Masks/standards , Respiratory Protective Devices/standards , Sterilization
19.
IEEE Pulse ; 11(3): 29-30, 2020.
Article in English | MEDLINE | ID: covidwho-607662

ABSTRACT

As the global pandemic caused by the COVID-19 virus continues to spread, researchers from across the world are harnessing their skills and opening their labs to contribute to solutions for managing and addressing the health crisis. One area identified by hospitals and medical providers as a critical need has been the shortage of personal protective equipment (PPE), which is required to keep health care providers safe from exposure to the virus as they care for patients. In response, manufacturers such as 3M have promised to increase production in order to fulfill the extensive orders. However, medical providers may not see the bulk of these outputs for weeks even as current supplies are running low.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Equipment Design/methods , Masks/supply & distribution , Pandemics/prevention & control , Personal Protective Equipment/supply & distribution , Pneumonia, Viral/prevention & control , Biomedical Engineering , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Equipment Design/standards , Humans , Masks/standards , Personal Protective Equipment/standards , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2
20.
Antimicrob Resist Infect Control ; 9(1): 88, 2020 06 17.
Article in English | MEDLINE | ID: covidwho-601144

ABSTRACT

INTRODUCTION: Transmission of SARS-CoV-2 to health care workers (HCW) poses a major burden in the current COVID-19 pandemic. Unprotected exposure to a COVID-19 patient is a key risk factor for HCWs. Transmission mainly occurs by droplet transmission, or by aerosol generating procedures. Respirators such as filtering face piece masks (FFP2), also called respirators, are required to prevent transmission during aerosol generating procedures, as part of the personal protective equipment (PPE) for HCWs. However, many HCW were infected due to lack of PPE, or failure to use them. Therefore, the worldwide shortage of respirators triggered the development of reprocessing used FFP2 respirators or N95 respirators as standard in the US. Our proposal with H2O2 plasma sterilization for decontamination allows to reprocess FFP2, while they still meet the filtration efficiency required by EN 149. The protocol is simple, uses available resources in hospitals and can be rapidly implemented to decrease the shortage of respirators during this crisis. The goal of the study was the evaluate if respirators can be reprocessed and still fulfill the requirements for filtration efficiency outlined by EN 149. METHODS: Used FFP2 respirators - Model 3 M Aura™ 1862+ - were sterilized using a low temperature process hydrogen peroxide (H2O2), V-PRO® maX Low Temperature, a FDA (Food and Drug Administration) approved method to decontaminate FFP2 respirators. Decontaminated respirators were further checked for residual peroxide by a single-gas detector for H2O2. The total inward leakage of the protective respirators was quantitatively tested with 10 test persons in an atmosphere charged with paraffin aerosol according to the European Standard EN 149. The fit factor was calculated as the inverse of the total inward leakage. RESULTS: Ten new and ten decontaminated FFP2 respirators were tested for filtration efficiency. None of the respirators exceeded the maximum acceptable concentration of peroxide. More than 4000 respirators have been reprocessed so far, at cost of approximately 0.3 Euro/piece. CONCLUSIONS: FFP2 respirators can be safely reprocessed once after decontamination with plasma peroxide sterilization, whereafter they still fulfill EN 149 requirements. This allows to almost double the current number of available FFP2 respirators.


Subject(s)
Coronavirus Infections/prevention & control , Infection Control/instrumentation , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Masks/standards , Pandemics/prevention & control , Personal Protective Equipment/standards , Pneumonia, Viral/prevention & control , Aerosols , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Device Approval , Equipment Design/standards , Eye Protective Devices , Humans , Hydrogen Peroxide , Infection Control/methods , Infection Control/standards , Materials Testing , Pneumonia, Viral/epidemiology , Risk Factors , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL